viernes, 29 de enero de 2010

CIRCUITOS COMBINACIONALES

USO DE COMPUERTAS LÓGICAS

CIRCUITOS COMBINACIONALES

Los circuitos combinacionales generan un estado en sus salidas que es una combinación lógica de las entradas presentes en ese momento, en el momento que cambie la entrada, la salida cambia al correspondiente estado de salida.

COMPUERTAS LOGICAS

Son circuitos que generan voltajes de salida en función de la combinación de entrada correspondientes a las Funciones Lógicas, en este curso se usa la analogía llamada lógica positiva en la cual alto (H) corresponde a Verdadero y bajo (L) corresponde a Falso.

COMPUERTA AND

Símbolo y diagrama de pines del 7408 integrado de 4 compuertas AND de 2 entradas en la tecnología TTL. En CMOS es el 4081 pero tiene una distribución de pines diferente.


COMPUERTA OR DE 2 ENTRADAS


Símbolo y diagrama de pines del 7432 integrado de 4 compuertas OR de 2 entradas en la tecnología TTL.

COMPUERTA INVERSOR

En TTL: 7404.

COMPUERTA NOR DE 2 ENTRADAS

En TTL: 7402.

COMPUERTA NAND DE 2 ENTRADAS

En TTL: 7400.

COMPUERTA XOR DE DOS ENTRADAS

En TTL: 7486.

lunes, 25 de enero de 2010

CURSO GRATIS DE FLASH

Aquí les dejo el enlace al Curso de FLASH que proporciona la página aulaclic.es, es un curso muy completo con información, imagenes y videos que hacen posible su estudio de una manera sencilla y eficaz.

Click a la imagen para acceder al curso:

viernes, 22 de enero de 2010

APUNTES DE ELECTRÓNICA DIGITAL

I.- DEFINICIÓN DE ELECTRÓNICA DIGITAL Y CARACTERÍSTICAS

La electrónica digital es una parte de la electrónica que se encarga de sistemas electrónicos en los cuales la información está codificada en dos únicos estados. A dichos estados se les puede llamar "verdadero" o "falso", o más comúnmente 1 y 0, refiriéndose a que en un circuito electrónico hay (1 - verdadero) tensión de voltaje o hay ausencia de tensión de voltaje (0 - falso). Electrónicamente se les asigna a cada uno un voltaje o rango de voltaje determinado, a los que se les denomina niveles lógicos, típicos en toda señal digital. Por lo regular los valores de voltaje en circuitos electrónicos pueden ir desde 1.5, 3, 5, 9 y 18 Volts dependiendo de la aplicación, así por ejemplo, en un radio de transistores convencional las tensiones de voltaje son por lo regular de 5 y 12 Volts al igual que se utiliza en los discos duros IDE de computadora.

Se diferencia de la electrónica analógica en que, para la electrónica digital un valor de voltaje codifica uno de estos dos estados, mientras que para la electrónica analógica hay una infinidad de estados de información que codificar según el valor del voltaje.
Esta particularidad permite que, usando Álgebra Booleana y un sistema de numeración binario, se puedan realizar complejas operaciones lógicas o aritméticas sobre las señales de entrada, muy costosas de hacer empleando métodos analógicos.

La electrónica digital ha alcanzado una gran importancia debido a que es utilizada para realizar autómatas y por ser la piedra angular de los sistemas microprogramados como son los ordenadores o computadoras.

Los sistemas digitales pueden clasificarse del siguiente modo:

Sistemas cableados

Combinacionales
Secuenciales
Memorias
Convertidores

Sistemas programados
Microprocesadores
Microcontroladores

II.-SISTEMAS DE NUMERACIÓN BINARIO,OCTAL Y HEXADECIMAL

El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en las computadoras, pues trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).

Representación

Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que a su vez pueden ser representados por cualquier mecanismo capaz de estar en dos estados mutuamente exclusivos.Por ejemplo , 01011101.

En una computadora, los valores numéricos pueden ser representados por dos voltajes diferentes y también se pueden usar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la arquitectura usada.

De acuerdo con la representación acostumbrada de cifras que usan números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Cuando son escritos, los números binarios son a menudo subindicados, prefijados o sufijados para indicar su base, o la raíz. Las notaciones siguientes son equivalentes:

100101 binario (declaración explícita de formato)
100101b (un sufijo que indica formato binario)
100101B (un sufijo que indica formato binario)
bin 100101 (un prefijo que indica formato binario)
1001012 (un subíndice que indica base 2 (binaria) notación)
%100101 (un prefijo que indica formato binario)
0b100101 (un prefijo que indica formato binario, común en lenguajes de programación)

Decimal a binario y viceversa

Se divide el número del sistema decimal entre 2, cuyo resultado entero se vuelve a dividir entre 2, y así sucesivamente. Ordenados los restos, del último al primero, este será el número binario que buscamos.
Para transformar de decimal a binario,se puede auxiliar de las siguientes tablas:

Operaciones Con Números Binarios

Suma de números binarios

Las posibles combinaciones al sumar dos bits son:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 al sumar 1+1 siempre nos llevamos 1 a la siguiente operación (acarreo).


Ejemplo

10011000
+00010101
————————
10101101

Resta de números binarios

El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:

0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)

La resta 0 - 1 se resuelve, igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1, lo que equivale a decir en el sistema decimal, 2 - 1 = 1.


Ejemplos

10001 11011001
-01010 - 10101011
———— ——————
00111 00101110

Producto de números binarios

El algoritmo del producto en binario es igual que en números decimales; aunque se lleva a cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.

Por ejemplo, multipliquemos 10110 por 1001:

10110
X 1001
—————
10110
00000
00000
10110
——————
11000110

División de números binarios

La división en binario es similar a la decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, éstas deben ser realizadas en binario.

Ejemplo


Dividir 100010010 (274) entre 1101 (13):



El sistema numérico en base 8 se llama octal y utiliza los dígitos 0 a 7.
Por ejemplo, el número binário para 74 (en decimal) es 1001010 (en binario), lo agruparíamos como 1 / 001 / 010, de tal forma que obtengamos una serie de números en binário de 3 dígitos cada uno (para fragmentar el número se comienza desde el primero por la derecha y se parte de 3 en 3), despues obtenemos el número en decimal de cada uno de los números en binario obtenidos: 1=1, 001=1 y 010=2. De modo que el número decimal 74 en octal es 112.

Hay que hacer notar que antes de poder pasar un número a octal es necesario pasar por el binario. Para llegar al resultado de 74 en octal se sigue esta serie: Decimal -> Binario -> Octal.
En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.

El sistema hexadecimal, a veces abreviado como hex, es el sistema de numeración posicional de base 16 —empleando por tanto 16 símbolos—. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa 28 valores posibles.

En principio dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos sería, por tanto, el siguiente:

S = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Se debe notar que A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. En ocasiones se emplean letras minúsculas en lugar de mayúsculas. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16.

Por ejemplo: 3E0A16 = 3×163 + E×162 + 0×161 + A×160 = 3×4096 + 14×256 + 0×16 + 10×1 = 15882.El sistema hexadecimal actual fue introducido en el ámbito de la computación por primera vez por IBM en 1963. Una representación anterior, con 0–9 y u–z, fue usada en 1956 por la computadora Bendix G-15.

III.-Circuitos integrados digitales

Los circuitos integrados son la base fundamental del desarrollo de la electrónica en la actualidad, debido a la tendencia a facilitar y economizar las tareas del hombre.Por esto es fundamental el manejo del concepto de circuito integrado, no sólo por aquellos que están en contacto habitual con este, sino también por las personas en general, debido a que este concepto debe de quedar inmerso dentro de los conocimientos mínimos de una persona.Un circuito integrado es una pieza o cápsula que generalmente es de silicio o de algún otro material semiconductor, que utilizando las propiedades de los semiconductores, es capaz de hacer las funciones realizadas por la unión en un circuito, de varios elementos electrónicos, como: resistencias, condensadores, transistores, etc.

Clasificación De Los Circuitos Integrados

Existen dos clasificaciones fundamentales de circuitos integrados(CI): los análogos y los digitales; los de operación fija y los programables; en este caso nos encargaremos de los circuitos integrados digitales de operación fija. Estos circuitos integrales funcionan con base en la lógica digital o álgebra de Boole, donde cada operación de esta lógica, es representada en electrónica digital por una compuerta.
La complejidad de un CI puede medirse por el número de puertas lógicas que contiene. Los métodosde fabricación actuales de fabricación permiten construir Cis cuya complejidad está en el rango de una a 105 o más puertas por pastilla.
Según esto los Cis se clasifican en los siguientes niveles o escalas de integración :SSI ( pequeña escala ) : menor de 10 puertas.MSI ( media escala ) : entre 10 y 100 puertas.LSI ( alta escala ) : entre 100 y 10.000 puertas.VLSI ( muy alta escala ) : a partir de 10.000 puertas.La capacidad de integración depende fundamentalmente de dos factores :

El ÁREA ocupada por cada puerta, que depende a su vez del tipo y del número de transistores utilizados para realizarla. Cuanto menor sea esta área mayor será la capacidad de integración a gran escala.

El CONSUMO de potencia. En un circuito integrado se realizan muchas puertas en un espacio reducido. El consumo total del chip es igual al consumo de cada puerta por el número de puertas. Si el consumo de cada puerta es elevado se generará mucho calor en el chip debido al efecto Joule, de forma que si este calor no es disipado convenientemente se producirá un aumento de temperatura que puede provocar un funcionamiento anómalo de los circuitos.

Familias Lógicas

Los circuitos digitales emplean componentes encapsulados, los cuales pueden albergar puertas lógicas o circuitos lógicos más complejos.

Estos componentes están estandarizados, para que haya una compatibilidad entre fabricantes, de forma que las características más importantes sean comunes. De forma global los componentes lógicos se engloban dentro de una de las dos familias siguientes:
TTL: diseñada para una alta velocidad.CMOS: diseñada para un bajo consumo.Actualmente dentro de estas dos familias se han creado otras, que intentan conseguir lo mejor de ambas: un bajo consumo y una alta velocidad. La familialógica ECL se encuentra a caballo entre la TTL y la CMOS. Esta familia nació como un intento de conseguir la rapidez de TTL y el bajo consumo de CMOS, pero en raras ocasiones se emplea.

Características Importantes de las Familias Lógicas

TTLLa familia TTL usa transistores del tipo bipolar por lo que está dentro de las familias lógicas bipolares.Las familias TTL estándar.-Texas Instruments (1964) introdujo la primera línea estándar de productos circuitales TTL. La serie 5400/7400 ha sido una de las familias lógicas de Circuitos Integrados más usadas.La diferencia entre las versiones 5400 y 7400 es que la primera es de uso militar, operable sobre rangos mayores de temperatura (de –55 a +125ºC) y suministro de alimentación (cuya variación en el suministro de voltaje va de 4,5 a 5,5 V). La serie 7400 opera sobre el rango de temperatura 0 – 70ºC y con una tensión de alimentación de 4,75 a 5,75 V. Ambas tienen un fan-out típico de 10, por lo que pueden manejar otras 10 entradas.
TTL de baja potencia, serie 74L00:Tienen menor consumo de energía, al costo de mayores retardos en propagación, esta serie es ideal para aplicaciones en las cuales la disipación de potencia es más crítica que la velocidad. Circuitos de baja frecuencia operados por batería tales como calculadoras son apropiados para la serie TTL.

TTL de alta velocidad, serie 74H00:Poseen una velocidad de conmutación mucho más rápida con un retardo promedio de propagación de 6ns. Pero la velocidad aumentada se logra a expensas de una disipación mayor de potencia.

TTL Schotty, serie 74S00:Tiene la mayor velocidad disponible en la línea TTL.Otras propiedades de los TTL son:-En cualquier Circuito Integrado TTL, todas las entradas son 1 a menos que estén conectadas con alguna señal lógica.-No todas las entradas en un Circuito Integrado TTL se usan en una aplicación particular.-Se presentan situaciones en que una entrada TTL debe mantenerse normalmente BAJA y luego hecha pasar a ALTA por la actuación de un suiche mecánico.-Las señales de entrada que manejan circuitos TTL deben tener transiciones relativamente rápidas para una operación confiable. Si los tiempos de subida o de caída son mayores que 1 µs, hay posibilidad de ocurrencia de oscilaciones en lasalida.

CMOSAcrónimo de Complementary Metal Oxide Semiconductor (Semiconductor Complementario de Óxido Metálico).Utilizados por lo general para fabricar memoria RAM y aplicaciones de conmutación, estos dispositivos se caracterizan por una alta velocidad de acceso y un bajo consumo de electricidad. Pueden resultar dañados fácilmente por la electricidad estática.La lógica CMOS ha emprendido un crecimiento constante en el área MSI, mayormente a expensas de TTL, con la cual es de directa competencia.El proceso de fabricación del CMOS es más simple que TTL y tiene una densidad de empaque mayor, permitiendo por consiguiente más circuitería en un área dada y reduciendo el costo por función.CMOS usa sólo una fracción de la potencia que se necesita para la serie TTL de baja potencia (74L00) y es así apropiada idealmente para aplicaciones que usan potencia de batería o potencia con batería de respaldo. La velocidad de operación de CMOS no es comparable aún con las series TTL más rápidas, pero se espera mejorar en este respecto. La serie 4000A es la línea más usada de Circuitos Integrados digitales CMOS. Contiene algunas funciones disponibles en la serie TTL 7400 y está en expansión constante. Algunas características más importantes de esta familia lógica son:-La disipación de potencia de estado estático de los circuitos lógicos CMOS es muy baja.-Los niveles lógicos de voltaje CMOS son 0 V para 0 lógico y + VDD para 1 lógico. El suministro + VDD puede estar en el rango 3 V a 15 V para la serie 4000A, por lo que la regulación de la fuente no es una consideración seria para CMOS.

Diferencias mas importantes:
Los voltajes de alimentación son de 5V para los circuitos TTL y de 3 V a 15 V para los circuitos CMOS.
En la fabricación de los circuitos integrados se usan transistores bipolares par el TTL y transistores MOSFET para La tecnología CMOS.
El circuito integrado CMOS es de menor consumo de energía pero de menor velocidad que los TTL.

Funciones Y Tablas De Verdad

Una función de un Álgebra de Boole es una variable binaria cuyo valor es igual al de una expresión algebraica en la que se relacionan entre sí las variables binarias por medio de las operaciones básicas, producto lógico, suma lógica e inversión.Se representa una función lógica por la expresión f = f (a, b, c,...)El valor lógico de f, depende del de las variables a, b, c,...Se llama termino canónico de una función lógica a todo producto o suma en la cual aparecen todas las variables en su forma directa o inversa. Al primero de ellos se le llama producto canónico y al segundo suma canónica. Por ejemplo sea una función de tres variables f (a, b, c). El término abc es un producto canónico mientras que el término a + b + c es una suma canónica.

El número máximo de productos canónicos o sumas canónicas viene dado por las variaciones con repetición de dos elementos tomados de n en n. El número de productos o sumas canónicas de n variables es por lo tanto (2)**n.

Para mayor facilidad de representación, cada termino canónico se expresa mediante un número decimal equivalente al binario obtenido al sustituir las variables ordenadas con un criterio determinado por un 1 o un 0 según aparezcan en su forma directa o complementada respectivamente.Los circuitos digitales operan en el sistema numérico binario, que implica que todas las variables de circuito deben ser 1 o 0. El álgebra utilizada para resolver problemas y procesar la información en los sistemas digitales se denomina álgebra de Boole, basada sobre la lógica más que sobre el cálculo de valores numéricos reales. El álgebra booleana considera que las proposiciones lógicas son verdaderas o falsas, según el tipo de operación que describen y si las variables son verdaderas o falsas. Verdadero corresponde al valor digital 1, mientras que falso corresponde a 0. Las tablas de verdad, llamadas tablas booleanas, presentan todas las posibles combinaciones de entrada frente a las salidas resultantes.

Los teoremas del álgebra de Boole son demostrables a diferencia de los del álgebra convencional, por el método de inducción completa. Para poder realizar esto se emplean las llamadas tablas de verdad que no son otra cosa que representaciones gráficas de todos los casos que pueden darse en una relación y de sus respectivos resultados.
La tabla de verdad de una función lógica es una forma de representación de la misma en la que se indica el valor 1 o 0 que toma la función para cada una de las combinaciones posibles de las variables de las cuales depende.
Si, para una determinada combinación de las entradas, la fusión toma el valor lógico 1, el producto canónico de todos los posibles 2n, que vale 1 para dicha combinación, ha de formar parte de la función. La deducción del producto canónico correspondiente es inmediata asignando al estado 0 la variable inversa y al estado 1 la variable directa.

Compuertas Lógicas y sus Tablas de Verdad

Una puerta lógica, o compuerta lógica, es un dispositivo electrónico que es la expresión física de un operador booleano en la lógica de conmutación. Cada puerta lógica consiste en una red de dispositivos interruptores que cumple las condiciones booleanas para el operador particular. Son esencialmente circuitos de conmutación integrados en un chip.

Claude Elwood Shannon experimentaba con relés o interruptores electromagnéticos para conseguir las condiciones de cada compuerta lógica, por ejemplo, para la función booleana Y (AND) colocaba interruptores en circuito serie, ya que con uno solo de éstos que tuviera la condición «abierto», la salida de la compuerta Y sería = 0, mientras que para la implementación de una compuerta O (OR), la conexión de los interruptores tiene una configuración en circuito paralelo.

La tecnología microelectrónica actual permite la elevada integración de transistores actuando como conmutadores en redes lógicas dentro de un pequeño circuito integrado. El chip de la CPU es una de las máximas expresiones de este avance tecnológico.
En nanotecnología se está desarrollando el uso de una compuerta lógica molecular, que haga posible la miniaturización de circuitos.

La lógica binaria tiene que ver con variables binarias y con operaciones que toman un sentido lógico. La manipulación de información binaria se hace por circuitos lógicos que se denominan Compuertas.

Las compuertas son bloques del hardware que producen señales en binario 1 ó 0 cuando se satisfacen los requisitos de entrada lógica. Las diversas compuertas lógicas se encuentran comúnmente en sistemas de computadoras digitales. Cada compuerta tiene un símbolo gráfico diferente y su operación puede describirse por medio de una función algebraica. Las relaciones entrada - salida de las variables binarias para cada compuerta pueden representarse en forma tabular en una tabla de verdad.
A continuación se detallan los nombres, símbolos, gráficos, funciones algebraicas, y tablas de verdad de las compuertas más usadas.

Compuerta AND: (ver funcionamiento)

Cada compuerta tiene dos variables de entrada designadas por A y B y una salida binaria designada por x. La compuerta AND produce la multiplicación lógica AND: esto es: la salida es 1 si la entrada A y la entrada B están ambas en el binario 1: de otra manera, la salida es 0. Estas condiciones también son especificadas en la tabla de verdad para la compuerta AND. La tabla muestra que la salida x es 1 solamente cuando ambas entradas A y B están en 1.El símbolo de operación algebraico de la función AND es el mismo que el símbolo de la multiplicación de la aritmética ordinaria (*).Las compuertas AND pueden tener más de dos entradas y por definición, la salida es 1 si todas las entradas son 1, su ecuación lógica está dada por S=a*b.

Compuerta OR: (ver funcionamiento)

La compuerta OR produce la función sumadora, esto es, la salida es 1 si la entrada A o la entrada B o ambas entradas son 1; de otra manera, la salida es 0. El símbolo algebraico de la función OR (+), es igual a la operación de aritmética de suma. Las compuertas OR pueden tener más de dos entradas y por definición la salida es 1 si cualquier entrada es 1, su ecuación lógica está dada por S=a+b.

Compuerta NOT: (ver funcionamiento)

El circuito NOT es un inversor que invierte el nivel lógico de una señal binaria. Produce el NOT, o función complementaria. El símbolo algebraico utilizado para el complemento es una barra sobra el símbolo de la variable binaria. Si la variable binaria posee un valor 0, la compuerta NOT cambia su estado al valor 1 y viceversa. El círculo pequeño en la salida de un símbolo gráfico de un inversor designa un inversor lógico. Es decir cambia los valores binarios 1 a 0 y viceversa.

Compuerta Separador (yes):
Un símbolo triángulo por sí mismo designa un circuito separador, el cual no produce ninguna función lógica particular puesto que el valor binario de la salida es el mismo de la entrada. Este circuito se utiliza simplemente para amplificación de la señal. Por ejemplo, un separador que utiliza 5 volt para el binario 1, producirá una salida de 5 volt cuando la entrada es 5 volt. Sin embargo, la corriente producida a la salida es muy superior a la corriente suministrada a la entrada de la misma.De ésta manera, un separador puede excitar muchas otras compuertas que requieren una cantidad mayor de corriente que de otra manera no se encontraría en la pequeña cantidad de corriente aplicada a la entrada del separador.

Compuerta NAND: (ver funcionamiento)

Es el complemento de la función AND, como se indica por el símbolo gráfico, que consiste en una compuerta AND seguida por un pequeño círculo (quiere decir que invierte la señal).La designación NAND se deriva de la abreviación NOT - AND. Una designación más adecuada habría sido AND invertido puesto que es la función AND la que se ha invertido.Las compuertas NAND pueden tener más de dos entradas, y la salida es siempre el complemento de la función AND.

Compuerta NOR: (ver funcionamiento)

La compuerta NOR es el complemento de la compuerta OR y utiliza el símbolo de la compuerta OR seguido de un círculo pequeño (quiere decir que invierte la señal). Las compuertas NOR pueden tener más de dos entradas, y la salida es siempre el complemento de la función OR.

lunes, 18 de enero de 2010

AMPLIFICADORES OPERACIONALES

CIRCUITO INTEGRADO

Un circuito integrado(CI), es una pastilla pequeña de material semiconductor, de algunos milímetros cuadrados de área, sobre la que se fabrican circuitos electrónicos generalmente mediante fotolitografía y que está protegida dentro de un encapsulado de plástico o cerámica. El encapsulado posee conductores metálicos apropiados para hacer conexión entre la pastilla y un circuito impreso.

Circuitos integrados analógicos.

Pueden constar desde simples transistores encapsulados juntos, sin unión entre ellos, hasta dispositivos completos como amplificadores, osciladores o incluso receptores de radio completos.
Circuitos integrados digitales.

Pueden ser desde básicas puertas lógicas (Y, O, NO) hasta los más complicados microprocesadores o microcontroladores.
Éstos son diseñados y fabricados para cumplir una función específica dentro de un sistema. En general, la fabricación de los CI es compleja ya que tienen una alta integración de componentes en un espacio muy reducido de forma que llegan a ser microscópicos. Sin embargo, permiten grandes simplificaciones con respecto los antiguos circuitos, además de un montaje más rápido.
AMPLIFICADOR OPERACIONAL
Un amplificador operacional (comúnmente abreviado A.O. u op-amp), es un circuito electrónico (normalmente se presenta como circuito integrado) que tiene dos entradas y una salida. La salida es la diferencia de las dos entradas multiplicada por un factor (G) (ganancia):
Vout = G·(V+ − V−).

El nombre de amplificador operacional proviene de una de las utilidades básicas de este, como son la de realizar operaciones matemáticas en computadores analógicos (características operativas).

Originalmente los amplificadores operacionales (AO) se empleaban para operaciones matemáticas (Suma, Resta, Multiplicación, División, Integración, Derivación, etc.) en calculadoras analógicas, de ahí su nombre.
El amplificador operacional es un dispositivo lineal de propósito general el cual tiene la capacidad de manejo de señal desde f=0 Hz hasta una frecuencia definida por el fabricante, tiene además limites de señal que van desde el orden de los nV, hasta unas docenas de voltio (especificación también definida por el fabricante). Los amplificadores operacionales se caracterizan pro su entrada diferencial y una ganancia muy alta, generalmente mayor que 105 equivalentes a 100dB.

El amplificador operacional (AO) es un amplificador de alta ganancia directamente acoplado, que en general se alimenta con fuentes positivas y negativas, lo cual permite que tenga excursiones tanto por arriba como por debajo de tierra (o el punto de referencia que se considere).

El primer amplificador operacional monolítico, que data de los años 1960, fue el Fairchild μA702 (1964), diseñado por Bob Widlar. Le siguió el Fairchild μA709 (1965), también de Widlar, y que constituyó un gran éxito comercial. Más tarde sería sustituido por el popular Fairchild μA741(1968), de David Fullagar, y fabricado por numerosas empresas, basado en tecnología bipolar.
Originalmente los A.O. se empleaban para operaciones matemáticas (suma, resta, multiplicación, división, integración, derivación, etc.) en calculadoras analógicas. De ahí su nombre.

El A.O. ideal tiene una ganancia infinita, una impedancia de entrada infinita, un ancho de banda también infinito, una impedancia de salida nula, un tiempo de respuesta nulo y ningún ruido. Como la impedancia de entrada es infinita también se dice que las corrientes de entrada son cero.

Notación

El símbolo de un MONOLITICO es el mostrado en la siguiente figura:
Los terminales son:
V+: entrada no inversora
V-: entrada inversora
VOUT: salida
VS+: alimentación positiva
VS-: alimentación negativa
Las terminales de alimentación pueden recibir diferentes nombres, por ejemplo en los A.O. basados en FET VDD y VSS respectivamente. Para los basados en BJT son VCC y VEE.
Normalmente los pines de alimentación son omitidos en los diagramas eléctricos por claridad.

Aplicaciones
Calculadoras analógicas
Filtros
Preamplificadores y buffers de audio y video
Reguladores
Conversores
Evitar el efecto de carga
Adaptadores de niveles (por ejemplo CMOS y TTL)

CIRCUITO INTEGRADO 555

El 555 es un circuito integrado que incorpora dentro de si dos comparadores de voltaje, un flip flop, una etapa de salida de corriente, divisor de voltaje resistor y un transistor de descarga. Dependiendo de como se interconecten estas funciones utilizando componentes externos es posible conseguir que dicho circuito realiza un gran numero de funciones tales como la del multivibrador astable y la del circuito monoestable.
El 555 tiene diversas aplicaciones, como: Control de sistemas secuenciales, divisor de frecuencias, modulación por ancho de pulso, generación de tiempos de retraso, repetición de pulsos, etc.

FUNCIONAMIENTO

Se alimenta de una fuente externa conectada entre sus terminales 8 (+Vcc) y 1(GND) tierra; el valor de la fuente de esta, va desde 5 V hasta 15 V de corriente continua, la misma fuente exterior se conecta a un circuito pasivo RC exterior, que proporciona por medio de la descarga de su capacitor una señal de voltaje que esta en función del tiempo, esta señal de tensión es de 1/3 de Vcc y se compara contra el voltaje aplicado externamente sobre la terminal 2 (TRIGGER) que es la entrada de un comparador. La terminal 6 (THRESHOLD) se ofrece como la entrada de otro comparador, en la cual se compara a 2/3 de la Vcc contra la amplitud de señal externa que le sirve de disparo. La terminal 5(CONTROL VOLTAGE) se dispone para producir modulación por anchura de pulsos, la descarga del condensador exterior se hace por medio de la terminal 7 (DISCHARGE), se descarga cuando el transistor (NPN) T1, se encuentra en saturación, se puede descargar prematuramente el capacitor por medio de la polarización del transistor (PNP) T2. Se dispone de la base de T2 en la terminal 4 (RESET) del circuito integrado 555, si no se desea descargar antes de que se termine el periodo, esta terminal debe conectarse directamente a Vcc, con esto se logra mantener cortado al transistor T2 de otro modo se puede poner a cero la salida involuntariamente, aun cuando no se desee. La salida esta provista en la terminal (3) del microcircuito y es además la salida de un amplificador de corriente (buffer), este hecho le da más versatilidad al circuito de tiempo 555, ya que la corriente máxima que se puede obtener cuando la terminal (3) sea conecta directamente al nivel de tierra es de 200 mA. La salida del comparador "A" y la salida del comparador "B" están conectadas al Reset y Set del FF tipo SR respectivamente, la salida del FF-SR actúa como señal de entrada para el amplificador de corriente (Buffer), mientras que en la terminal 6 el nivel de tensión sea más pequeño que el nivel de voltaje contra el que se compara la entrada Reset del FF-SR no se activará, por otra parte mientras que el nivel de tensión presente en la terminal 2 sea más grande que el nivel de tensión contra el que se compara la entrada Set del FF-SR no se activará.


APLICACIONES

Este Circuito Integrado (C.I.) es para los experimentadores y aficionados, un dispositivo barato con el cual pueden hacer muchos proyectos. Este temporizador es tan versátil que se puede utilizar para modular una señal en Amplitud Modulada (A.M.)
Está constituido por una combinación de comparadores lineales, flip-flops (biestables digitales), transistor de descarga y excitador de salida.
Las tensiones de referencia de los comparadores se establecen en 2/3 V para el primer comparador C1 y en 1/3 V para el segundo comparador C2, por medio del divisor de tensión compuesto por 3 resistencias iguales R. En el gráfico se muestra el número de pin con su correspondiente función.
En estos días se fabrica una versión CMOS del 555 original, como el Motorola MC1455, que es muy popular. Pero la versión original de los 555 sigue produciéndose con mejoras y algunas variaciones a sus circuitos internos. El 555 esta compuesto por 23 transistores, 2 diodos, y 16 resistencias encapsulados en silicio. Hay un circuito integrado que se compone de dos temporizadores en una misma unidad, el 556, de 14 pines y el poco conocido 558 que integra cuatro 555 y tiene 30 pines.
Hoy en día, si ha visto algún circuito comercial moderno, no se sorprenda si se encuentra un circuito integrado 555 trabajando en él. Es muy popular para hacer osciladores que sirven como reloj (base de tiempo) para el resto del circuito.

lunes, 11 de enero de 2010

MÁS PROBLEMAS RESISTENCIAS


sábado, 9 de enero de 2010

MáS APUNTES ELECTRÓNICA

CONCEPTOS DISPOSITIVOS ELECTRÓNICOS
Capacitor:

Se denomina capacitor al dispositivo que es capaz de acumular cargas eléctricas. Básicamente un capacitor está constituido por un conjunto de láminas metálicas paralelas separadas por material aislante.
La acumulación de cargas eléctricas entre las láminas da lugar a una diferencia de potencial o tensión sobre el capacitor y la relación entre las cargas eléctricas acumuladas y la tensión sobre el capacitor es una constante denominada capacidad
La unidad de medida de la capacidad es el faradio y como dicha unidad es muy grande se utilizan submúltiplos de la misma.

Resistencia:

Una resistencia o resistor es un elemento que causa oposición al paso de la corriente, causando que en sus terminales aparesca una diferencia de tensión (un voltaje).

Un foco que todos tenemos en nuestros hogares es una resistencia. Las resistencias se representan con la letra R y el valor de éstas se mide en Ohmios (Ω).
Diodos:
El diodo semiconductor es el dispositivo semiconductor más sencillo y se puede encontrar, prácticamente en cualquier circuito electrónico.
Los diodos se fabrican en versiones de silicio (la más utilizada) y de germanio.
Los diodos tienen muchas aplicaciones, pero una de la más comunes es el proceso de conversión de corriente alterna (C.A.) a corriente continua (C.C.). En este caso se utiliza el diodo como rectificador.
El LED es un tipo especial de diodo, que trabaja como un diodo común, pero que al ser atravesado por la corriente eléctrica, emite luz.
Existen diodos LED de varios colores que dependen del material con el cual fueron construidos. Hay de color rojo, verde, amarillo, ámbar, infrarrojo, entre otros.
El diodo zener se polariza en sentido directo se comporta como un diodo rectificador común.

SIMBOLOGIA ELÉCTRICA-ELECTRÓNICA


COMO OBTENER EL VALOR DE LAS RESISTENCIAS -CÓDIGO DE COLORES

COMO FLUYE LA CORRIENTE EN UN CIRCUITO ELECTRICO

Es un recorrido conductor complejo entre terminales positivos y negativos; por convención se dice que la corriente fluye de positivo a negativo, aunque de hecho el flujo de los electrones va de negativo a positivo. Si se unen componentes eléctricos, como bombillas e interruptores y se conectan los polos de los extremos (positivo con negativo) tenemos una conexión en serie. Si se conectan los polos de lado a lado (negativo con negativo y positivo con positivo) es una conexión en paralelo. Un cortocircuito es un circuito en el que se efectúa una conexión directa, sin resistencia, inductancia ni capacitancia apreciables, entre los terminales de la fuente de fuerza electromotriz.
La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la ley de Ohm. Según la misma, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito. Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias.
EJERCICIOS LEY DE OHM

1.-Determine la corriente que pasa por un circuito eléctrico que se encuentra conectado a 50 Volts y presenta una resistencia de 450Ω.

2.-Cual es el voltaje que alimenta a un circuito por el que pasan 8.5 amperios de corriente y presenta una resistencia de 100 Ω.

3.-El voltaje que entrega una pila es de 9 voltios y la corriente es de 0.008 amperios, determine la resistencia que presenta el circuito.

4.-Una ducha eléctrica esta siendo alimentada por 220 voltios y la resistencia es de 400 Ω, determine la corriente que circula a través de ella.

5.-¿Cual debe ser la resistencia que presenta el embobinado de un motor que se alimenta de 9 voltios en corriente directa y pasa una corriente de 0.425 amperios?
6.-Cual es el valor de una resistencia por la que circula una corriente de 0.005ª cuando el voltaje aplicado es de 2 V.

7.-Cual es el valor de una resistencia por la que circula una corriente de 0.025ª cuando el voltaje aplicado es de 4 V.

jueves, 7 de enero de 2010

CURSO GRATIS DE DREAMWEAVER


Aquí les dejo el enlace al Curso de Dreamweaver que proporciona la página aulaclic.es, es un curso muy completo con información, imagenes y videos que hacen posible su estudio de una manera sencilla y eficaz.

Click a la imagen para acceder al curso:


PROYECTO:ELECTROSCOPIO

martes, 5 de enero de 2010

INTRODUCCIÓN A DREAMWEAVER

DREAMWEAVER
Es un software fácil de usar que permite crear páginas web profesionales.
Las funciones de edición visual de Dreamweaver permiten agregar rápidamente diseño y funcionalidad a las páginas, sin la necesidad de programar manualmente el código HTML.
Se puede crear tablas, editar marcos, trabajar con capas, insertar comportamientos JavaScript, etc., de una forma muy sencilla y visual.
HTML

Las páginas que vemos en Internet están escritas utilizando el lenguaje HTML (Hyper Text Markup Language). Este lenguaje está basado en etiquetas que marcan el inicio y fin de cada elemento de la página Web.
Por ejemplo, el título de la página Web se escribe entre las etiquetas :


Ambas etiquetas consisten en poner un mismo comando entre los símbolos "<" y ">". La primera etiqueta indica inicio, y la segunda, que incluye el símbolo "/", indica final.

Las etiquetas que se introducen en un documento HTML no son visibles cuando el documento se muestra en un navegador (IExplorer, Netscape, etc). Cuando un usuario desde Internet solicita ver una página el servidor Web envía la página al navegador y este interpreta las etiquetas para dar el formato a la página.
Cuando utilizamos Dreamweaver para crear una página Web no tenemos que preocuparnos de todo esto. Dreamweaver inserta automáticamente las etiquetas necesarias para construir la página con la apariencia y contenido definidos en el editor gráfico.

ARRANCAR DREAMWEAVER
Desde el botón Inicio situado, normalmente, en la esquina inferior izquierda de la pantalla. Colocar el cursor y hacer clic sobre el botón Inicio, se despliega un menú; al colocar el cursor sobre Todos los programas aparece otra lista con los programas que hay instalados en tu ordenador, buscar Macromedia (o Adobe si tienes las últimas versiones), seguidamente Dreamweaver 8, hacer clic sobre él, y se arrancará el programa. Desde el icono


de Dreamweaver 8 del escritorio ....

ENTORNO DE DREAMWEAVER


FUENTE: aulaclic.es

FUNDAMENTOS DE ELECTRÓNICA - SEMANA 1 Y 2

DEFINICIÓN DE ELECTRICIDAD


La electricidad (del griego elektron, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros.Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos. Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.

También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnología que la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.

La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas. Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas. Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones).

CONDUCTIVIDAD Y RESISTIVIDAD

La conductividad eléctrica es la propiedad de los materiales que cuantifica la facilidad con que las cargas pueden moverse cuando un material es sometido a un campo eléctrico. La resistividad es una magnitud inversa a la conductividad, aludiendo al grado de dificultad que encuentran los electrones en sus desplazamientos, dando una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor. Generalmente la resistividad de los metales aumenta con la temperatura, mientras que la de los semiconductores disminuye ante el aumento de la temperatura.

Los materiales se clasifican según su conductividad eléctrica o resistividad en conductores, dieléctricos, semiconductores y superconductores.
Conductores eléctricos. Son los materiales que, puestos en contacto con un cuerpo cargado de electricidad, transmiten ésta a todos los puntos de su superficie. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad, como son el grafito, las soluciones salinas (por ejemplo, el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal más empleado es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho más ligero, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.
La conductividad eléctrica del cobre puro fue adoptada por la Comisión Electrotécnica Internacional en 1913 como la referencia estándar para esta magnitud, estableciendo el International Annealed Copper Standard (Estándar Internacional del Cobre Recocido) o IACS. Según esta definición, la conductividad del cobre recocido medida a 20 °C es igual a 0,58108 S/m.[19] A este valor se lo denomina 100% IACS, y la conductividad del resto de los materiales se expresa como un cierto porcentaje de IACS. La mayoría de los metales tienen valores de conductividad inferiores a 100% IACS, pero existen excepciones como la plata o los cobres especiales de muy alta conductividad, designados C-103 y C-110.[20]
Dieléctricos. Son los materiales que no conducen la electricidad, por lo que pueden ser utilizados como aislantes. Algunos ejemplos de este tipo de materiales son vidrio, cerámica, plásticos, goma, mica, cera, papel, madera seca, porcelana, algunas grasas para uso industrial y electrónico y la baquelita. Aunque no existen materiales absolutamente aislantes o conductores, sino mejores o peores conductores, son materiales muy utilizados para evitar cortocircuitos (forrando con ellos los conductores eléctricos, para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que, de tocarse accidentalmente cuando se encuentran en tensión, pueden producir una descarga) y para confeccionar aisladores (elementos utilizados en las redes de distribución eléctrica para fijar los conductores a sus soportes sin que haya contacto eléctrico). Algunos materiales, como el aire o el agua, son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, es aislante a temperatura ambiente pero, bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor.

DEFINICIÓN DE ELECTRÓNICA

La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.
Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concrétamente en la rama de ingeniería de materiales.

APLICACIONES DE LA ELECTRÓNICA

La electrónica desarrolla en la actualidad una gran variedad de tareas. Los principales usos de los circuitos electrónicos son el control, el procesado, la distribución de información, la conversión y la distribución de la energía eléctrica. Estos dos usos implican la creación o la detección de campos electromagnéticos y corrientes eléctricas. Entonces se puede decir que la electrónica abarca en general las siguientes áreas de aplicación:

  • Electrónica de control

  • Telecomunicaciones

  • Electrónica de potencia
SISTEMA ELECTRÓNICO

Un sistema electrónico es un conjunto de circuitos que interactúan entre sí para obtener un resultado. Una forma de entender los sistemas electrónicos consiste en dividirlos en las siguientes partes:

SEÑALES ELECTRÓNICAS

Es la representación de un fenómeno físico o estado material a través de una relación establecida; las entradas y salidas de un sistema electrónico serán señales variables.
En electrónica se trabaja con variables que toman la forma de Tensión o corriente estas se pueden denominar comúnmente señales.Las señales primordialmente pueden ser de dos tipos:


Variable analógica–Son aquellas que pueden tomar un número infinito de valores comprendidos entre dos límites. La mayoría de los fenómenos de la vida real dan señales de este tipo. (presión, temperatura, etc.)

Variable digital– También llamadas variables discretas, entendiéndose por estas, las variables que pueden tomar un número finito de valores. Por ser de fácil realización los componentes físicos con dos estados diferenciados, es este el número de valores utilizado para dichas variables, que por lo tanto son binarias. Siendo estas variables más fáciles de tratar (en lógica serian los valores V y F) son los que generalmente se utilizan para relacionar varias variables entre si y con sus estados anteriores.

VOLTAJE

Es la diferencia de potencial generada entre los extremos de un componente o dispositivo eléctrico. También podemos decir que es la energía capaz de poner en movimiento los electrones libres de un conductor o semiconductor. La unidad de este parámetro es el voltio (V). Existen dos tipos de tensión: la continua y la alterna.

Voltaje continuo o directo (VDC) –Es aquella que tiene una polaridad definida, como la que proporcionan las pilas, baterías y fuentes de alimentación.
Voltaje Alterno (VAC) .- –Es aquella cuya polaridad va cambiando o alternando con el transcurso del tiempo. Las fuentes de tensión alterna más comunes son los generadores y las redes de energía doméstica.

CORRIENTE

También denominada intensidad, es el flujo de electrones libres a través de un conductor o semiconductor en un sentido. La unidad de medida de este parámetro es el amperio (A). Al igual que existen tensiones continuas o alternas, las intensidades también pueden ser continuas o alternas, dependiendo del tipo de tensión que se utiliza para generar estos flujos de corriente.


CORRIENTE CONTINUA

Se denomina corriente continua (CC en español, en inglés DC, de Direct Current) al flujo de cargas eléctricas que no cambia de sentido con el tiempo. La corriente eléctrica a través de un material se establece entre dos puntos de distinto potencial. Cuando hay corriente continua, los terminales de mayor y menor potencial no se intercambian entre sí. Es errónea la identificación de la corriente continua con la corriente constante (ninguna lo es, ni siquiera la suministrada por una batería). Es continua toda corriente cuyo sentido de circulación es siempre el mismo, independientemente de su valor absoluto.


Su descubrimiento se remonta a la invención de la primera pila voltaica por parte del conde y científico italiano Alessandro Volta. No fue hasta los trabajos de Edison sobre la generación de electricidad, en las postrimerías del siglo XIX, cuando la corriente continua comenzó a emplearse para la transmisión de la energía eléctrica. Ya en el siglo XX este uso decayó en favor de la corriente alterna, que presenta menores pérdidas en la transmisión a largas distancias, si bien se conserva en la conexión de redes eléctricas de diferentes frecuencias y en la transmisión a través de cables submarinos.
Actualmente (2008) se está extendiendo el uso de generadores de corriente continua a partir de células fotoeléctricas que permiten aprovechar la energía solar.

CORRIENTE ALTERNA

Se denomina corriente alterna (simbolizada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda sinoidal. En el uso coloquial, "corriente alterna" se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas.

El sistema usado hoy en día fue ideado fundamentalmente por Nikola Tesla, y la distribución de la corriente alterna fue comercializada por George Westinghouse. Otros que contribuyeron al desarrollo y mejora de este sistema fueron Lucien Gaulard, John Gibbs y Oliver Shallenger entre los años 1881 y 1889. La corriente alterna superó las limitaciones que aparecían al emplear la corriente continua (CC), la cual constituye un sistema ineficiente para la distribución de energía a gran escala debido a problemas en la transmisión de potencia.
La razón del amplio uso de la corriente alterna, que minimiza los problemas de trasmisión de potencia, viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. La energía eléctrica trasmitida viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, se puede, mediante un transformador, modificar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Esto permite que los conductores sean de menor sección y, por tanto, de menor costo; además, minimiza las pérdidas por efecto Joule, que dependen del cuadrado de la intensidad. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para permitir su uso industrial o doméstico de forma cómoda y segura.


RESISTENCIA


Es la propiedad física mediante la cual todos los materiales tienden a oponerse al flujo de la corriente. La unidad de este parámetro es el Ohmio (Ω). No debe confundirse con el componente resistor.


CIRCUITOS ELECTRÓNICOS


Se denomina circuito electrónico a una serie de elementos o componentes eléctricos (tales como resistencias, inductancias, condensadores y fuentes) o electrónicos, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas. Los circuitos electrónicos o eléctricos se pueden clasificar de varias maneras:


COMPONENTES

Para la síntesis de circuitos electrónicos se utilizan componentes electrónicos e instrumentos electrónicos. A continuación se presenta una lista de los componentes e instrumentos más importantes en la electrónica, seguidos de su uso más común:


Altavoz: reproducción de sonido.
Cable: conducción de la electricidad.
Conmutador: reencaminar una entrada a una salida elegida entre dos o más.
Interruptor: apertura o cierre de circuitos, manualmente.
Pila: generador de energía eléctrica.
Transductor: transformación de una magnitud física en una eléctrica (ver enlace).
Visualizador: muestra de datos o imágenes.

Dispositivos analógicos (algunos ejemplos)

Amplificador operacional: amplificación, regulación, conversión de señal, conmutación.
Capacitor: almacenamiento de energía, filtrado, adaptación impedancias.
Diodo: rectificación de señales, regulación, multiplicador de tensión.
Diodo Zener: regulación de tensiones.
Inductor: adaptación de impedancias.
Potenciómetro: variación de la corriente eléctrica o la tensión.
Relé: apertura o cierre de circuitos mediante señales de control.
Resistor o Resistencia: división de intensidad o tensión, limitación de intensidad.
Transistor: amplificación, conmutación.
Dispositivos digitales

Biestable: control de sistemas secuenciales.
Memoria: almacenamiento digital de datos.
Microcontrolador: control de sistemas digitales.
Puerta lógica: control de sistemas combinacionales.
Dispositivos de potencia

DIAC: control de potencia.
Fusible: protección contra sobre-intensidades.
Tiristor: control de potencia.
Transformador: elevar o disminuir tensiones, intensidades, e impedancia aparente.
Triac: control de potencia.
Varistor: protección contra sobre-tensiones.

CIRCUITO EN SERIE

Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. El terminal de salida de un dispositivo se conecta al terminal de entrada del dispositivo siguiente.
Seguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectados en serie, para alcanzar así el voltaje que se precise.







CIRCUITO EN PARALELO


El circuito paralelo es una conexión donde, los bornes o terminales de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.
Seguiendo un símil hidráulico, dos depósitos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo.


CIRCUITO EN MIXTO


El circuito mixto es una combinación de elementos eléctricos conectados en serie y en paralelo.
Para la solución de estos circuitos se tratan de resolver primero los elementos más sencillos. Si hay dos elementos conectados en paralelo seguidos, se halla antes uno en serie que los reemplace.

EQUIPOS DE MEDICIÓN
Los equipos de medición de electrónica se utilizan para crear estímulos y medir el comportamiento de los Dispositivos Bajo Prueba (DUT por sus siglas en inglés). A continuación presentamos una lista de los más equipos de medición más importantes:

Galvanómetro: mide el cambio de una determinada magnitud, como la intensidad de corriente o tensión (o voltaje). Se utiliza en la construcción de Amperímetros y Voltímetros analógicos.
Amperímetro y pinza amperimétrica: miden la intensidad de corriente eléctrica.
Óhmetro o puente de Wheatstone: miden la resistencia eléctrica. Cuando la resistencia eléctrica es muy alta (sobre los 1 M-ohm) se utiliza un megóhmetro o medidor de aislamiento.
Voltímetro: mide la tensión.
Multímetro o polímetro: mide las tres magnitudes citadas arriba, además de continuidad eléctrica y el valor B de los transistores (tanto PNP como NPN).
Vatímetro: mide la potencia eléctrica. Está compuesto de un amperímetro y un voltímetro. Dependiendo de la configuración de conexión puede entregar distintas mediciones de potencia eléctrica, como la potencia activa o la potencia reactiva.
Osciloscopio: miden el cambio de la corriente y el voltaje respecto al tiempo.
Electrómetro: mide la carga eléctrica.
Frecuencímetro o contador de frecuencia: mide la frecuencia.
Reflectómetro de dominio de tiempo (TDR): prueba la integridad de cables largos.
Capacímetro: mide la capacidad eléctrica o capacitancia.
Contador eléctrico: mide la energía eléctrica. Al igual que el vatímetro, puede cofigurarse para medir energía activa (consumida) o energía reactiva.

MULTIMETROS


El multímetro es un instrumento de medición muy conocido también con los nombres: VOM (Voltios,Ohmios, Miliamperímetro), Tester, Polímetro.

En la actualidad hay multímetros con capacidad de medir muchas otras magnitudes. (capacitancia, frecuencia, temperatura, etc.).

Este instrumento de medida por su precio y su exactitud sigue siendo el preferido del aficionado o profesional en electrónica.

Existen otros instrumentos como el osciloscopio que tiene un precio más alto y se utiliza para realizar mediciones más informativas.
Hay dos tipos de multímetros: El multímetro analógico y el multímetro digital.

MULTÍMETROS ANALÓGICOS

Los multímetros analógicos son fáciles de identificar por una aguja que al moverse sobre una escala indica del valor de la magnitud medida.

MULTÍMETROS DIGITALES

Los multímetros digitales se identifican principalmente por un panel numérico para leer los valores medidos, la ausencia de la escala que es común el los mulímetros analógicos. Ver la gráfico al lado derecho.

Lo que si tienen es un selector de función y un selector de escala (algunos no tienen selector de escala pues el VOM la determina automáticamente). Algunos tienen un solo selector central.
El selector de funciones sirve para escoger el tipo de medida que se realizará. Ver en la siguiente tabla como ubicar el selector de funciones para medir voltaje AC y DC, corriente alterna, corriente directa y resistencia.

El selector de rangos del multímetro sirve para establecer el máximo valor que se podrá visualizar.

Si no se tiene una idea de la magnitud a medir empezar por el rango más grande.
Esto previene el daño o deterioro del multímetro. Ver algunos ejemplos en la tabla de la derecha.
Véase que se escoge siempre un rango superior al de la magnitud que se mide.


MEDIR VOLTAJE EN C.A.

Medir en corriente alterna (C.A.) es igual de fácil que hacer las mediciones en corriente directa (DC).
Se selecciona, en el multímetro que estemos utilizando, la unidad (voltios) en AC (c.a.).
Como se está midiendo en corriente alterna, es indiferente la posición del cable negro y el rojo.
Se selecciona la escala adecuada, si tiene selector de escala, (si no se sabe que magnitud de voltaje se va a medir, escoger la escala más grande). Si no tiene selector de escala seguramente el multímetro (VOM) escoge la escala para medir automáticamente.

Se conecta el multímetro a los extremos del componente (se pone en paralelo). y se obtiene la lectura en la pantalla.
En el diagrama V1 es el voltaje en el resistor R1, V2 es el voltaje en el resistor R2. Vs es la fuente de voltaje AC.
La lectura obtenida es el valor RMS o efectivo del voltaje.

Medir corriente alterna


Se selecciona, en el multímetro que estemos utilizando, la unidad (amperios) en AC (c.a.). Como se está midiendo en corriente alterna, es indiferente la posición del cable negro y el rojo.
Se selecciona la escala adecuada, si tiene selector de escala (si no se sabe que magnitud de corriente se va a medir, escoger la escala mas grande).
Si no tiene selector de escala seguramente el multímetro / VOM escoge la escala automáticamente.
Para medir una corriente con el multímetro, éste tiene que ubicarse en el paso de la corriente que se desea medir. Para esto se abre el circuito en el lugar donde pasa la corriente a medir y conectamos el multímetro (se pone en "serie"). Ver el diagrama.
En algunas ocasiones no es posible abrir el circuito para colocar el amperímetro. En estos casos, si se desea averiguar la corriente que pasa por un elemento, se utiliza la Ley de Ohm para averiguar la corriente en forma indirecta.
Se mide el voltaje que hay entre los terminales del elemento por el cual pasa la corriente que se desea averiguar y después, con la ayuda de la Ley de Ohm (V = I x R), se obtiene la corriente (I = V / R).

Para obtener una buena medición, se debe tener los valores exactos tanto del voltaje (en AC) como del resistor.
Otra opción es utilizar un amperímetro de gancho, que permite obtener la corriente que pasa por un circuito sin abrirlo.

Este dispositivo, como su nombre lo indica, tiene un gancho que se coloca alrededor del conductor por donde pasa la corriente y mide el campo magnético alrededor de él.
Esta medición es directamente proporcional a la corriente que circula por el conductor y que se muestra con ayuda de una aguja o pantalla.
El valor obtenido por este tipo de medición es RMS o efectivo de la corriente.


MEDIR CORRIENTE DIRECTA



Para medir corriente directa se selecciona, en el multímetro que estemos utilizando, la unidad (amperios) en DC (c.d.).

Se revisa que los cables rojo y negro estén conectados correctamente.
Se selecciona la escala adecuada, si tiene selector de escala (si no tenemos idea de que magnitud de la corriente que vamos a medir, escoger la escala mas grande).
Si no tiene selector de escala seguramente el multímetro escoge la escala automáticamente.
Para medir una corriente con el multímetro, éste tiene que ubicarse en el paso de la corriente que se desea medir.
Para esto se abre el circuito en el lugar donde pasa la corriente a medir y conectamos el multímetro (lo ponemos en "serie").
Si la lectura es negativa significa que la corriente en el componente, circula en sentido opuesto al que se había supuesto, (normalmente se supone que por el cable rojo entra la corriente al multímetro y por el cable negro sale)
En algunas ocasiones no es posible abrir el circuito para colocar el amperímetro. En estos casos, si se desea averiguar la corriente que pasa por un elemento, se utiliza la Ley de Ohm.
Nota: Amperímetro se llama, en este caso, al multímetro preparado para medir corriente
Se mide la tensión que hay entre los terminales del elemento por el cual pasa la corriente que se desea averiguar y después, con la ayuda de la Ley de Ohm (V = I x R), se obtiene la corriente (I = V / R).
Para obtener una buena medición, se debe tener los valores exactos tanto de la voltaje como de la resistencia.
Otra opción es utilizar un amperímetro de gancho, que permite obtener la corriente que pasa por un circuito sin abrirlo. Este dispositivo, como su nombre lo indica, tiene un gancho que se coloca alrededor del conductor por donde pasa la corriente y mide el campo magnético alrededor de él.
Esta medición es directamente proporcional a la corriente que circula por el conductor y que se muestra con una aguja o pantalla.

OSCILOSCOPIO

El osciloscopio es un instrumento muy útil para realizar mediciones tanto AC como DC . Permite visualizar las formas de las ondas que se presentan en un circuito. Este instrumento básicamente traza la amplitud (la tensión) de la forma de onda contra el tiempo en un tubo de rayos catódicos (CRT / TRC).

Para que la señal se presente estática en la pantalla, ésta es trazada varia veces por segundo, así parece continua en el tiempo.

Al poder visualizar la señal, es posible:- Ver la amplitud de la señal (tensión pico, tensión píco-pico). Se calcula con las divisiones en sentido vertical de la pantalla del TRC- Obtener la frecuencia. Se calcula con las divisiones en sentido horizontal de la pantalla del TRC- Confirmar o no si es la señal esperada en el punto donde se mide.
En una medición de una señal en DC, el multímetro podría considerarse el equipo de medición preferido, pero esta medición carecería de información como el rizado, si este existiera.
El osciloscopio que se presenta es para fines didácticos, de dos canales, con características básicas comunes a la mayoría de ellos.Hay osciloscopios más modernos, de más canales, digitales, con muchas características más, pero en esencia todos tienen el mismo objetivo y principio.

CARACTERÍSTICAS
La pantalla del osciloscopio. La pantalla es simplemente un TRC (tubo de rayos catódicos) en el cual el rayo de electrones es deflectado (desviado), para trazar la curva en la pantalla.
Los osciloscopios normalmente tienen dividida la pantalla en 8 divisiones verticalmente (eje Y) y la medición se hace en voltios (V.) y 10 divisiones horizontalmente (eje X) y la medición se hace en segundos (Seg.)

Es conveniente establecer en la pantalla del osciloscopio el nivel de cero (0) voltios, en la línea horizontal central. Esta ubicación divide la pantalla en una parte superior y una inferior, permitiendo visualizar tanto valores positivos como negativos. Haciéndolo de esta manera también asegura que la señal se pueda visualizar con la mejor exactitud posible. Es muy útil tanto en DC como en AC.
Ajuste de intensidad (intensity) y enfoque (focus) del trazo. El control de intensidad del trazo aumenta o disminuye, según se aumente (a la derecha) o disminuya (a la izquierda) la rotación de la perilla.

LEY DE OHM

Es una ley publicada por un científico alemán de ese apellido, que postula lo siguiente:
La intensidad de corriente que circula por un circuito dado, es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo.
Esta ley rige el comportamiento de las cargas eléctricas dentro de los circuitos.
Las fórmulas básicas se detallan a continuación:

V= tensión ó voltaje I= corriente R= resistencia W= potencia
V=I x R I=V / R R=V / I

donde, empleando unidades del Sistema internacional, tenemos que:
I = Intensidad en amperios (A)
V = Diferencia de potencial en voltios (V) ó (U)
R = Resistencia en ohmios (Ω).

Esta ley no se cumple, por ejemplo, cuando la resistencia del conductor varía con la temperatura, y la temperatura del conductor depende de la intensidad de corriente y el tiempo que esté circulando.

FUENTES:
WIKPEDIA.ORG

lunes, 4 de enero de 2010

PÁGINA OFICIAL CNCI

DONDE NOS UBICAMOS?